Chem. Ber. 119, 850-856 (1986)

Ester der Ferrocendithiocarbonsäure

Max Herberhold*, Jutta Ott und Ludwig Haumaier

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 3008, D-8580 Bayreuth

Eingegangen am 5. August 1985

Zwei Methoden wurden zur Darstellung von Estern der Ferrocendithiocarbonsäure angewandt: 1. Die Alkylierung des Ferrocendithiocarboxylat-Anions im Piperidinium-Salz $[C_{5}H_{10}NH_{2}]^{+}[Fc-CS_{2}]^{-}$ (1) mit CH₃I, C₂H₅I und Ethylenoxid ergab einkernige Ester, Fc-C(S)SR (R = CH₃ (2), C₂H₅ (3), CH₂CH₂OH (4)), während mit CH₂Cl₂ oder CH₂I₂ der zweikernige Methylendiester $[Fc-C(S)S]_2CH_2$ (9a) entstand. 2. Die Umsetzung von Ferrocencarbonsäurechlorid, Fc - C(O)Cl, mit Methanthiol, CH_3SH , zu $Fc - C(O)SCH_3$ (7) und anschließende Sulfurierung mit P_4S_{10} lieferte Fc-C(S)SCH₃ (2). Die analoge Reaktion mit Dithiolen $HS[CH_2]_nSH$ (n = 2-4) führte zu den Zweikernverbindungen $[Fc-C(S)S]_2[CH_2]_n$ (n = 2 (9b), 3 (9c), 4 (9d)); alle Zwischenstufen der Zusammensetzung $Fc - C(O)S[CH_2]_{0}SH$ $(11 \, b - d),$ $[Fc-C(O)S]_2[CH_2]_n$ (12b - d)und Fc - C(S)S- $[CH_2]_{n}SC(O) - Fc (13b - d)$ konnten isoliert werden. Die neuen Verbindungen wurden anhand der ¹H- und ¹³C-NMR-Spektren charakterisiert.

Esters of Ferrocenedithiocarboxylic Acid

Two methods were used to prepare esters of ferrocenedithiocarboxylic acid: 1. Alkylation of the ferrocenedithiocarboxylate anion in the piperidinium salt $[C_5H_{10}NH_2]^+[Fc-CS_2]^-$ (1) by CH₃I, C₂H₅I, and ethylene oxide gave mononuclear esters Fc-C(S)SR ($R = CH_3$ (2), C₂H₅ (3), CH₂CH₂OH (4)), whereas the dinuclear methylene diester $[Fc-C(S)S]_2CH_2$ (9a) was formed using either CH₂Cl₂ or CH₂I₂. 2. The reaction of ferrocenecarbonyl chloride, Fc-C(O)Cl, with methanethiol, CH₃SH, to give $Fc-C(O)SCH_3$ (7) and subsequent sulfuration by P₄S₁₀ furnished $Fc-C(S)SCH_3$ (2). The analogous reactions with dithiols, $HS[CH_2]_nSH$ (n = 2-4), led to the dinuclear compounds $[Fc-C(O)S]_2[CH_2]_n$ (n = 2 (9b), 3 (9c), 4 (9d)). All the intermediates of the composition $Fc-C(O)S[CH_2]_nSH$ (11b-d), $[Fc-C(O)S]_2[CH_2]_n$ (12b-d), and $Fc-C(S)S[CH_2]_nSC(O)-Fc$ (13b-d) could be isolated. The new compounds were characterized on the basis of their ¹H and ¹³C NMR spectra.

Bei der Darstellung von Carbonylmetall-Komplexen mit Ferrocendithiocarboxylato-Liganden¹⁾ hatten wir beobachtet, daß das Ferrocendithiocarboxylat-Anion, $Fc-CS_2^-$, in einer Nebenreaktion mit dem Lösungsmittel Dichlormethan den Methylendiester $[Fc-C(S)S]_2CH_2$ bildet. In der Folge haben wir gezielt nach Möglichkeiten gesucht, Ester der Ferrocendithiocarbonsäure zu synthetisieren, die einen oder zwei Ferrocendithiocarboxylat-Reste enthalten. Dabei wurden zwei unterschiedliche Reaktionswege beschritten:

a) die Alkylierung des Ferrocendithiocarboxylat-Anions, die bereits von *Kato* et al.²⁾ in einigen Fällen angewandt worden war, und

b) die Umsetzung von Ferrocencarbonsäurechlorid mit Thiolen und nachfolgende Sulfurierung der Monothioester mit Phosphorpentasulfid.

1. Darstellung von Estern mit einem Ferrocendithiocarboxylat-Rest

Die Alkylierung von Piperidinium-ferrocendithiocarboxylat, $[C_5H_{10}NH_2]^+$ -[Fc-CS₂]⁻ (1), mit Alkylhalogeniden ist nur in beschränktem Umfang möglich (vgl. Lit.²). Während die Reaktion mit Methyliodid bei Raumtemperatur rasch zu 2 führt, erfordert die Umsetzung mit Ethyliodid zu 3 bereits erhöhte Temperatur; 1,2-Dibromethan und 1,1,2,2-Tetrabromethan reagieren nicht. Die Ester 4 und 5 mit β -ständigen funktionellen Gruppen im Rest R werden mit Ethylenoxid bzw. Ethylensulfid als Alkylierungsmittel erhalten. Zur Darstellung von 5 muß allerdings das Salz eines tertiären Amins, z. B. [NEt₃H]⁺[Fc-CS₂]⁻, eingesetzt werden, da bei der Reaktion von Ethylensulfid mit 1 das zersetzliche Piperidinderivat 6 entsteht.

Der Methylester 2 läßt sich auch – unter Umgehung der aufwendigen Synthese²⁾ von 1 – durch Sulfurierung des Ferrocenthiocarbonsäure-S-methylesters (7)^{3,4)} mit P_4S_{10} erhalten. Nach Katada et al.³⁾ kann 7 durch Methylierung des Ferrocenthiocarboxylat-Anions dargestellt werden, das aus Ferrocencarbonsäurechlorid mit NaHS zugänglich ist. Die direkte Reaktion von Ferrocencarbonsäurechlorid mit Methanthiol in Gegenwart von Triethylamin liefert 7 jedoch schneller und in besserer Ausbeute:

Der zu 7 isomere Ferrocenthiocarbonsäure-O-methylester 8 entsteht bei der Umsetzung von 2 mit überschüssigem Kaliummethoxid.

2. Darstellung von Estern mit zwei Ferrocendithiocarboxylat-Resten

Die Reaktion des Piperidinium-Salzes 1 mit Dichlor- oder Diiodmethan führt zum Methylendiester 9a. Die Bildung eines Chlor- oder Iodmethylesters als Zwischenprodukt konnte nicht beobachtet werden.

Das entsprechende Ethylenderivat 9b ist aus 1 und 1,2-Dibromethan nicht erhältlich; es entsteht jedoch neben 5 bzw. 6 bei der Reaktion des Ferrocendithio-

carboxylat-Anions mit Ethylensulfid. Analog bildet sich bei der Umsetzung von 1 mit Ethylenoxid neben 4 die unsymmetrische Verbindung 10, die einen Ferrocendithio- und einen Ferrocenmonothiocarboxylat-Rest enthält.

Eine allgemein anwendbare Möglichkeit zur Darstellung von Diestern des Typs 9 bietet die Reaktion von Ferrocencarbonsäurechlorid mit Dithiolen HS-[CH₂]_nSH (n = 2, 3, 4); durch stufenweise Sulfurierung der zweikernigen Ferrocen*mon*othiocarbonsäureester 12b-d entstehen schließlich die Ferrocen*di*thiocarbonsäureester 9b-d.

b: n = 2, **c**: n = 3, **d**: n = 4

Alle Zwischenstufen dieser Reaktionsfolge lassen sich in Substanz isolieren. Die Bildung der zweikernigen Verbindungen 12b-d aus den einkernigen Estern 11b-d ist offenbar begünstigt: Selbst bei Verwendung eines Überschusses an Dithiol HS[CH₂]_nSH entstehen immer vergleichbare Mengen von 11b-d und 12b-d nebeneinander. Auch die Sulfurierung mit P₄S₁₀ läßt sich nicht gezielt auf der Stufe der Verbindungen 13b-d anhalten.

3. Spektroskopische Charakterisierung

Die ¹H-NMR-Spektren der Ester 2–13 (Tab. 1) zeigen für den Ferrocenylrest jeweils ein Singulett, das den Protonen des unsubstituierten Cyclopentadienylringes entspricht, und zwei triplettartige Signale, die denen des substituierten Rings zuzuordnen sind. Die chemischen Verschiebungen der Pseudotripletts sind für die Art des Substituenten (-C(S)SR, -C(S)OR, -C(O)SR) charakteristisch und nahezu unabhängig vom Rest R. Typische Bereiche sind 4.61–4.66 und 5.14 bis 5.19 ppm für die Dithiocarboxylate Fc-C(S)SR, 4.49-4.52 und 4.98–5.00 ppm für die Monothiocarboxylate Fc-C(S)OR sowie 4.43–4.48 und 4.81–4.86 ppm

für die Monothiocarboxylate Fc-C(O)SR. Weniger ausgeprägt sind die Unterschiede in den chemischen Verschiebungen der Cyclopentadienyl-Singuletts; bei den Dithiocarboxylaten liegen die Signale jedoch allgemein bei etwas höherem Feld (4.14-4.17 ppm) als bei den Monothiocarboxylaten (4.16-4.22 ppm).

In den ¹³C-NMR-Spektren (Tab. 1) finden sich ebenfalls charakteristische Bereiche für die einzelnen Signale der Ferrocenyl-Kohlenstoffe. Am deutlichsten unterscheiden sich hier die chemischen Verschiebungen der Ring-Kohlenstoffe C-1, die den Substituenten tragen (ca. 88 ppm für -C(S)SR, ca. 82 ppm für -C(S)ORsowie ca. 79 ppm für -C(O)SR). Erwartungsgemäß liegen auch die entsprechenden Resonanzen der Carboxylat-Kohlenstoffe in deutlich voneinander abgegrenzten Bereichen (226–229 ppm bei -C(S)SR, 216–217 ppm bei -C(S)OR sowie 193–195 ppm bei -C(O)SR).

	, H-MWa)						1.9C(1H)−MME(b)						
	C ₅ H ₅	2-H/5-H	3-H/4-H	CH2	sonsti	ige	C"H"	C-1	C-2/C-5 od. c)	C-3/C-4	C=0 C=S	CH,	CH3
2	4.14	5.16	4.61	-	2,70в	(CH ₃)	71.8	88.8	69,8	72.6	229.0	-	18.8
3	4.14	5.14	4.61	3.33g	1.36t	(CH ₃)	71.8	88.2	69.6	72.7	228.3	29.4	12.9
4	4.15	5.17	4.65	3.61m 3.86m	2.08t	(OH)	71.9	88.0	69.9	73.2	227.9	37.1 60.5	-
5	4.16	5.15	4.65	3.01m 3.73m			72.0	88.1	69.9	73.2	226.9	33.9 36.4	-
<u>6</u>	4.13	5.14	4.61	2.64m 3.53m	1.50m 2.50m	}(NC_1H_10)	71.9	88.3	69,9	72.9	228.2	32.2 56.8	_g)
2	4.20	4.85	4.45	-	2.398	(CH ₂)	70.4	79.2	68.7	71.5	194.4	-	11.3
8	4.14	4.98	4.49	-	4.14s	(CH ₂)	70.8	81.9	70.5	72.3	217.2	-	58.2
<u>9a</u>	4.16	5.15	4.65	5.35s	-		72.1	87.9	70.1	73.4	226.0	40.2	-
<u>96</u>	4.17	5.17	4.65	3.70s	-		72.0	88.2	70.0	73.2	227.2	32.9i)	-
<u>9c</u>	4.16	5.16	4.63	2.13 quint 3.47th)	-		71.9	88.3	69.9	73.0	227.7	26.7 33.9 ⁱ⁾	-
<u>9d</u>	4.14	5.14	4.62	1.85m 3.38m	-		71.8	88.2	69.7	72.8	227.7	27.3 ⁱ⁾ 34.3 ⁱ⁾	-
<u>10</u>	4.17d) 4.19 ^{e)}	5.19 ^{d)} 5.00 ^{e)}	4.66d) 4.52 ^{e)}	3.88td) 4.82t ^{e)}	-		72.0 ^d) 71.0 ^e)	88.1d) 81.9 ^{e)}	70.7 70.0	73.3 72.6	226.8d) 215.9 ^{e)}	33.3d) 68.1e)	-
112	4.19	4.84	4.47	2.78m 3.20m	1.67t	(SR)	70.6	78.8	68.8	71.9	193.2	25.1 32.4	-
<u>11c</u>	4.16	4.81	4.43	1.90m 2.55m 3.07t	1.43t	(SH)	70.4	79.0	68.7	71.7	193.5	23.3 26.6 33.9	-
<u>114</u>	4.17	4.82	4.43	1.70m ^{h)} 2.53m 2.96m	1,36t	(SH)	70.4	79.2	68.7	71.6	193.7	24.0 27.6 28.6 32.8	-
<u>12</u> 5	4.22	4.86	4.47	3.24s	-		70.6	78.9	68.9	71.8	193.3	28.7 ⁱ⁾	-
<u>12c</u>	4.19	4.84	4.44	1.97 quint 3.09th)	-		70.5	79.1	69.8	71.7	193.6	27.2 ⁱ⁾ 30.5	-
<u>12d</u>	4.19	4.83	4.44	3.01m 1.76m	-		70.5	79.3	88.8	71.6	193.8	27.8 ⁱ⁾ 29.1 ⁱ⁾	-
<u>13b</u>	4.17d) 4.22f)	5.16 ^{d)} 4.86f)	4.65d) 4.48f)	3.63m ^d) 3.30m ^f)	-		72.0d) 70.6f)	88.1 ^{d)} 78.9 ^f)	69.9 ^{d)} 68.9 ^{f)}	73.2 ^{d)} 72.0 ^f)	227.2 ^{d)} 193.4 ^{f)}	34.7 26.9	-
<u>13c</u>	4.15d) 4.20f)	5.15d) 4.85f)	4.63d) 4.47f)	3.45t ^{d)} 3.11tf) 2.05 quint	-		71.9d) 70.5f)	88.2d) 79.1f)	69.8 ^d) 68.8 ^f)	73.0d) 71.8f)	227.8d) 193.7f)	33.7 27.5 28.5	-
<u>13d</u>	4.14d) 4.20 ^f)	5.14d) 4.84 ^f)	4.61d) 4.45f)	3.37md) 3.03mf) 1.82mh)	-		71.8d) 70.4f)	88.2 ^d) 79.2 ^f)	69.8d) 88.7 ^f)	72.8d) 71.6f)	227.9d) 193.7f)	27.1 27.8 29.3 34.4	-

Tab. 1. ¹H- und ¹³C-NMR-Daten der Ester 2–13 (CDCl₃, 0°C)

a) δ-Werts [ppm], bezogen auf δ(CHCl₃) = 7.24. - b) δ-Werts [ppm], bezogen auf δ(CDCl₃) = 77.0. - c) Bine Zuordnung zu C-2/C-5 bzw. C-3/C-4 kann nicht getroffen werden. - d) Fc-C(8)SCH₃-Gruppierung. - e) Fc-C(S)CCH₃-Gruppierung. - f) Fc-C(S)CH₃-Gruppierung. - f) δ(NC₃H₁₀): 24.3, 25.9, 54.3. - h) 4 Protonen. - i) 2 Kohlenstoffe.

Die IR-Spektren zeigen die auffälligsten Unterschiede im Bereich zwischen 1200 und 1300 cm⁻¹, in dem die Absorption der v(C-C)-Schwingung zwischen dem Ferrocenylrest und dem Dithio- bzw. Thiocarboxylat-Substituenten auftritt. Während bei den Estern des Typs Fc-C(S)SR oder Fc-C(O)SR nur jeweils eine starke Bande bei 1270-1280 bzw. 1230-1250 cm⁻¹ zu beobachten ist, findet man für Fc-C(S)OR zusätzlich zu einer Bande bei 1290 cm⁻¹ zwei weitere starke Absorptionen bei 1230-1240 und 1190-1210 cm⁻¹, die C-O-C-Schwingungen zugeordnet werden können.

Die Massenspektren enthalten als intensivste Peaks stets das Molekülion und die Fragmente $Fc-CS^+$ (m/z 229) und/oder $Fc-CO^+$ (m/z 213).

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung unserer Untersuchungen.

Experimenteller Teil

NMR-Spektren: Jeol FX 90 Q. – IR-Spektren: Beckman IR 4240. – Massenspektren: Varian MAT CH 7 (70 eV). – Elementaranalysen: Mikroanalytisches Labor Pascher, Bonn.

Alle Arbeiten mit Ausnahme der Dünnschichtchromatographie wurden unter gereinigtem Stickstoff als Schutzgas und in wasserfreien, N₂-gesättigten Lösungsmitteln ausgeführt. Das Piperidinium-Salz $[C_5H_{10}NH_2]^+[Fc-CS_2]^-$ (1) wurde nach Literaturvorschrift²⁾ erhalten; das Triethylammonium-Salz $[NEt_3H]^+[Fc-CS_2]^-$ wurde analog dargestellt. Ferrocencarbonsäurechlorid, Fc-C(O)Cl, wurde aus Ferrocencarbonsäure und SOCl₂ synthetisiert³⁾. Alle anderen Ausgangsverbindungen waren käuflich und wurden ohne weitere Reinigung verwendet.

Zur Dünnschichtchromatographie wurden mit Kieselgel (Fluka, GF 254, Schichtdicke 0.5 mm) beschichtete Platten eingesetzt. Für die Säulenchromatographie und Filtration kam Kieselgel (Grace, Silicagel 60 Å, $70-200 \mu$) zur Verwendung.

Darstellung der Ester: Jeweils 1-2 mmol Ferrocenylverbindung wurden in 30-60 ml Solvens gelöst und mit den entsprechenden Reaktionspartnern versetzt; Details finden sich in Tab. 2. Alle Umsetzungen ließen sich dünnschichtchromatographisch gut verfolgen. Nach beendeter Reaktion wurde das Lösungsmittel abgezogen, der Rückstand wurde in CH₂Cl₂ aufgenommen und nach den in Tab. 2 angegebenen Methoden aufgetrennt und gereinigt. Die Produkte wurden entweder aus Hexan (2-4, 7, 8, 10, 11b-d) oder aus CH₂Cl₂/Hexan (5, 9a-d, 12b-d, 13b-d) bei -78°C kristallisiert.

Zur Darstellung der Ester 7, 11b-d und 12b-d aus Fc-C(O)Cl und Mercaptoverbindungen wurde zur Bindung von HCl ein Überschuß von Triethylamin zugesetzt. Bei den Sulfurierungsreaktionen wurde die auf 80°C erhitzte Toluollösung des jeweiligen Ferrocenmonothiocarbonsäureesters bis zur vollständigen Umsetzung portionsweise mit P₄S₁₀ versetzt.

Das Produktgemisch der Umsetzung von 1 mit Ethylensulfid wurde zunächst über Kieselgel filtriert. Der Ester **9b** wurde mit CH_2Cl_2 eluiert und nach Methode E (Tab. 2) weiter gereinigt. Mit THF ließ sich **6** als rote Zone eluieren. Das Lösungsmittel wurde abgezogen, und aus dem Rückstand wurde **6** mit Pentan extrahiert.

Bei der Reinigung von 4 nach Methode B (Tab. 2) wurde 10 als schwache, mit der Lösungsmittelfront laufende Zone erhalten und dann nach Methode F von einer weiteren Verbindung der Zusammensetzung $[Fc-C(S)OCH_2CH_2S]_2$ getrennt (¹H-NMR (CDCl₃, 0°C): $\delta = 4.16$ (s, C₅H₅), 5.00 (t, 2-H/5-H), 4.51 (t, 3-H/4-H); 4.86 (t, J = 6.3 Hz; OCH₂) und 3.17 (t, J = 6.3 Hz; SCH₂). $- {}^{13}C{}^{1}H{}$ -NMR (CDCl₃, 0°C): $\delta = 71.1$ (C₅H₅), 81.9 (C-1), 70.7 und 72.6 (C-2-C-5), 216.1 (C(S)OR), 37.0 (SCH₂) und 68.2 (OCH₂). - MS (70 eV): m/z = 610 (M⁺)).

Ester	Ausgangsverbindungen (Molverhältnis)	Reaktionsbedingungen (Reinigungsmethode ^{a)})	Farbe, % Ausb.
2	$1 + CH_{3}I(1:4)$	CHCl ₃ , 20°C, 2 h, (A)	rosa, 75
2	$7 + P_4 S_{10} (1:2)$	Toluol, 80°C, 5 h, (G)	rosa, 78
3	$1 + C_2 H_5 I(1:4)$	CHCl ₃ , 62°C, 2 h, (D)	rosa, 61
4	$1 + CH_2CH_2O^{b}$	CH ₂ Cl ₂ , 20°C, 6 h, (B)	rosa, 50 (+ 5% 10)
5	$[NEt_{3}H]^{+}[FcCS_{2}]^{-} + CH_{2}CH_{2}S (1:10)$	CH_2Cl_2 , 20°C, 16 h, (F)	violett, 10 (+ 16% 9b)
6	$1 + CH_2CH_2S (1:10)$	CH_2Cl_2 , 20°C, 16 h	rot, 15 (+ 16% 9b)
7	$Fc - COCl + CH_3SH^{b}$	CH ₂ Cl ₂ , 20°C, 30 min, (C)	orange, 79
8	$2 + KOCH_3$ (1:10)	CH ₃ OH, 65°C, 5 h, (A) ^{e)}	orange, 58
9a	1 in CH ₂ Cl ₂ -Lösung	CH ₂ Cl ₂ , 40 °C, 6 h, (E)	violett, 54
9b	$1 + CH_2CH_2S$ (1:10)	CH ₂ Cl ₂ , 20°C, 20 h, (E)	violett, 16 (+ 15% 6)
9 b	$12b + P_4 S_{10} (1:4)$	Toluol, 80°C, 5 h, (G)	violett, 20 ^{d)}
9c	$12c + P_4S_{10}(1:4)$	Toluol, 80°C, 5 h, (G)	violett, 39 ^{d)}
9d	$12d + P_4 S_{10} (1:4)$	Toluol, 80°C, 5 h, (G)	violett, 52 ^{d)}
10	$1 + CH_2CH_2O^{b}$	CH ₂ Cl ₂ , 20°C, 6 h, (F)	rosa, 5 (+ 50% 4)
11 b	$Fc-COCl + HS[CH_2]_2SH (1:1)$	CH ₂ Cl ₂ , 20°C, 30 min, (B)	orange, 42 (+ 33% 12b)
11c	$Fc - COCl + HS[CH_2]_3SH (1:1)$	CH ₂ Cl ₂ , 20°C, 30 min, (B)	orange, 38 (+ 32% 12c)
11 d	$Fc-COCl + HS[CH_2]_4SH (1:1)$	CH ₂ Cl ₂ , 20°C, 30 min, (B)	orange, 43 (+ 32% 12d)
12 b	$Fc-COCl + HS[CH_2]_2SH(2:1)$	CH ₂ Cl ₂ , 40 °C, 2 h, (B)	orange, 68
12c	$Fc-COCl + HS[CH_2]_3SH(2:1)$	CH ₂ Cl ₂ , 40 °C, 2 h, (B)	orange, 65
12 d	$Fc-COCl + HS[CH_2]_4SH (2:1)$	CH ₂ Cl ₂ , 20°C, 2 h, (B)	orange, 61

Tab. 2. Darstellung der Ester 2–12

^{a)} Reinigung der Produkte: A: Säulenchromatographie an Kieselgel (Säule 20×1.5 cm), Eluent $CH_2Cl_2/Hexan 1: 2 (v/v)$. B – F: Dünnschichtchromatographie: B: Eluent CH_2Cl_2 ; C: Eluent $CH_2Cl_2/Hexan (2:1, v/v)$; D: Eluent $CH_2Cl_2/Hexan (1:2, v/v)$; E: Eluent $CH_2Cl_2/Hexan (1:3, v/v)$; F: Eluent $CH_2Cl_2/Hexan (1:4, v/v)$. G: Filtration über Kieselgel, Solvens CH_2Cl_2 , Dünnschicht-chromatographie, Eluent $CH_2Cl_2/Hexan (1:1, v/v)$. – ^{b)} Während der gesamten Reaktionsdauer wurde langsam ein schwacher Strom von Ethylenoxid bzw. Methanthiol durchgeleitet. – ^{e)} Die bis auf ca. 5 ml eingeengte Methanollösung wurde direkt auf die Säule gegeben. – ^{d)} Als Zwischenprodukt treten jeweils die Ester 13b, 13c bzw. 13d auf, die bei der Chromatographie (Methode G) als hellviolette Zone abgetrennt werden.

Die Zusammensetzung einiger ausgewählter Produkte wurde auch durch Elementaranalysen belegt:

 $Fc - C(S)SCH_3$ (2) (rosa, Schmp. 49 - 50 °C). C₁₂H₁₂FeS₂ (276.2) Ber. C 52.18 H 4.38 Gef. C 52.40 H 4.54 $Fc-C(S)OCH_3$ (8) (orange, Schmp. 64-66°C). C12H12FeOS (260.1) Ber. C 55.40 H 4.65 S 12.32 Gef. C 55.45 H 4.70 S 12.3 $[Fc-C(S)S]_2CH_2$ (9a) (violett, Schmp. 162-163°C). C23H20Fe2S4 (536.4) Ber. C 51.50 H 3.76 S 23.91 Gef. C 51.29 H 3.81 S 23.8 $[Fc - C(S)S]_2C_2H_4$ (9b) (violett, Schmp. 158-160°C). C₂₄H₂₂Fe₂S₄ (550.4) Ber. C 52.37 H 4.03 S 23.20 Gef. C 52.16 H 4.26 S 23.0

- M. Herberhold, J. Ott und L. Haumaier, Chem. Ber. 118, 3143 (1985).
 S. Kato, M. Wakamatsu und M. Mizuta, J. Organomet. Chem. 78, 405 (1974).
 T. Katada, M. Nishida, S. Kato und M. Mizuta, J. Organomet. Chem. 129, 189 (1977).
 D. E. Bublitz und G. H. Harris, J. Organomet. Chem. 4, 404 (1965).

[182/85]